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ABSTRACT 

In this work we continue studying the notion of completion of R-modules, 

over a commutative ring R, relative to a torsion theory a. We develop 

some techniques relative to localization at prime ideals and give structural 

results on the completion of finitely generated R-modules, describing it 

as the product of classical completions on local noetherian rings. 

In t roduc t ion  

A fundamental tool in the study of the Matlis duality for a commutative local ring 

(R, m) is the completion with respect to the maximal ideal m, cf. [13]. This theory 

had been extended to a more general setting in [4], where the completion of a ring 

R was defined in terms of torsion theories, thus yielding back the aforementioned 

Matlis duality theory as an special case. 

Later in [3] the authors introduced and studied the general definition of com- 

pletion of an arbitrary module, with respect to a torsion theory, and established 

its first properties. 

Continuing the study of completion, some structure results are necessary to 

complete the theory. One of the aims of this paper is to show that the completion 
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of a module can be expressed, in an elegant way, as a direct product of classical 

completions on local rings obtained by localizing at prime ideals. For the ring 

R, this result follows easily from [4]. That  simple proof can not be adapted to 

a-finitely generated R-modules, however. 

We begin by collecting some introductory remarks about the subject of com- 

pletion; most of the results can be found in either [3] or [4], and we refer to [6] 

and [15] for undefined terms relating to torsion theories. 

Let R be a unitary commutative ring and let a be a torsion theory in the 

category R -  mod of unitary R-modules. We say that an R-module M is a- 

noetherian if the set 

Co(M) = {N C_ M: M/NE .To} 

satisfies the ascending chain condition with respect to the inclusion. The ring R 

is said to be a-noetherian if it is a-noetherian as an R-module. In the literature 

there are many different characterizations of a-noetherian rings and R-modules; 

we refer to [6] or [11] for a rather complete sources on this subject. 

Let us introduce two useful examples of torsion theories in the category R- 

mod. Let p be a prime ideal of R, the torsion theory cogenerated by R/p, see [6], 

has as Gabriel filter the set of all ideals I such that I ~ p, it coincides with the 

torsion theory determined by the multiplicative set R \ p, hence we denote by 

a R.. p this torsion theory. If in addition R is a noetherian ring or I is a finitely 

generated ideal of R, the torsion theory a l  generated by R/I, see [6], has an easy 

description, thus its Gabriel filter consists of those ideals J such that I n C_ J for 

some positive integer n. 

If a is a torsion theory in R - mod, then there are several sets of prime ideals 

which determine the torsion theory a, at least when R is a-noetherian. They 

are: 

Z(a) = {p e Spec(R): R/p ¢ T~} 

as well as 

K:(a) = {p E Spec(R): R/p e Fo} 

and C(a), the set of all maximal elements in/C(a). The sets/C(a) and Z(ct) form 

a partit ion of Spec(R). Moreover,/C(a) is gene r i ca l ly  c losed in Spec(R), with 

the Zariski topology, (i.e., if p, q C Spec(R) satisfy q C p and p ¢ /C(a), then 

q e K:(a)) and Z(a) is c losed u n d e r  spec ia l iza t ion ,  (i.e., if p, q e Spec(R) 
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satisfy q C_ p and q • Z(a), then p • Z(a)). If the ring R is noetherian then the 

torsion theory a can be expressed as 

= p • = p • = p • 

In more general situations, this may fail to hold. Yet, if R is a a-noetherian ring, 

then the torsion theories T bigger that  a are still determined by /C(T). In this 

case we have: 

= A { " , , - , :  p • = A { " , , - , :  p • 

There exists another property shared by all torsion theories in a noetherian 

ring: stability. We say that  a torsion theory a is s t a b l e  if the class iYo is closed 

under taking essential extensions. As a consequence of the Artin-Rees Lemma,  

every torsion theory on a noetherian ring is stable. In the relative case we can 

prove a similar result, i.e., if a is an stable torsion theory in R - mod and R 

is a-noetherian, then every torsion theory T _> a is also stable, see [5, Lemma 

VI.3.5]. 

With this background, we may start  properly our theory. Let a be a stable 

torsion theory in R - rood such that  R is a-noetherian; following [5, page 157], 

we define the first skeleton of a as the torsion theory a 1 such that  Z ( a  1) = 

Z(a) U C(a). So a ~_ a 1, hence a 1 is stable and R is aLnoether ian  by the above 

remarks. 

Let us include at this point some easy examples. Let a be the trivial torsion 

theory on a noetherian local ring (R,m),  i. e., T~ = {0}, then a 1 is the torsion 

theory generated by the simple R-module R/m. Another typical example is the 

following: let R be a Krull domain and a the torsion theory such that  /C(a) = 

Spec(1)(R) = {p • Spec(R): height(p) < 1}. It  is well known that  R is a-  

noetherian but, in general, not noetherian, cf. [15]. So the theory we will develop 

can be applied to this particularly interesting example, as well. 

If  a < 7- are torsion theories in R - mod, where R is a-noetherian and o" is 

stable, then for any R-module M, we have defined in [3] the (a, T)-completion of 

M by 

M (°'~) = !im{Qo(M/N): M/N • ~ } ,  

i.e., M (°'~) is the completion of Qo(M)  in the category (R, a) - mod with respect 

to the torsion theory ~-. The reader can consult [8], [10], [12] or [15] as a guide 

on completion in the case in which a is the trivial torsion theory. 
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In particular, if a < T < a 1, we obtained additional information on the comple- 

tion and its related features, i.e., Hausdorff modules, pseudocomplement, etc. It 

is in this case that we can give a structural result on the completion M (a'~). We 

use the work of E. Matlis on torsion free modules, cf. [9], and the recent paper of 

W. Brandal, [2], as inspiration, but the methods to prove the main theorem are 

completely different; they follow mainly the philosophy contained in the paper 

[4]. Actually, Brandal and Matlis proved a decomposition result only for the ring 

R, and here we show that  it is possible to obtain a similar result for a-finitely 

generated R-modules. 

1. (a, rp)-completion 

Throughout this note R will be a commutative ring and a a stable torsion theory 

in R - mod, such that R is a-noetherian. 

In what follows let p E C(a), and denote by 7rp the torsion theory determined 

by the set Z0rp) = Z(a) U {p}, i. e., ~r v = A{aR..q: q ~ Z(a) U {p}}. Observe 

that  a _< rp, so R is rp-noether ian and ~rp is stable. 

We are going to compute R (~''p) step by step. 

1. First of all we consider the pseudocomplement a = (a : 7rp) of rp relative 

to a. It is well known from [3] that g:(~) is the smallest generically closed 

set containing/C(a) N Z(rp) = ~(a)  t') {p} = {p}. Thus ~ = aR-.p. The 

localization at this torsion theory will be denoted by (-)p,  as usually. 

2. Using [3, Proposition 3.10] and the first step, we thus obtain: 

3. We observe that  ~rp induces a torsion theory ~ in Rp - mod by: 

if M E Rp - rood, then M E T~ if, and only if, M E 7~p. 

This torsion theory ~ yields a partition of Spec(Rp) consisting of Z ( ~ )  = 

(pRp} and K ( ~ )  = Spec(Rp) \{pRp}. Thus, we have that ~ is equal to 

the torsion theory avRp generated by the quotient Rp-module Rp/pRp. 

In order to obtain the main result of this section, we need the next Proposition: 

PROPOSITION 1.1: H I  is an R-submodule of Rp such that 0 ~ Rp/I E Jr~N:l'.,, 

then  I = Ip. 
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Proof: Using [5, Lemma III.4.2] and [5, Proposition III.4.13] from the hypothesis 

we obtain 

o ~ Ass(Rp/I) C_ K:(a) n Z(~rp) = {p}. 

Hence the assertion follows from [15, Proposition IX.4.2]. | 

THEOREM 1.2: With the same notation as in the above Proposition 

where Rp is the ordinary pRp-completion of the local ring (Rp, pRp). 

Proof" By definition 

(Rp) (~'~') = lim{Q~(Rp/I): R d I  • 3co n T~,} = 

and using the previous Proposition we obtain 

= li_mm{Q~(Rp/Ip): Rp/Ip • T~,,, } = 

now, since the composition Qo (-)p is exactly (-)p for all p • /E(a) ,  the equality 

follows as: 

= !im{Rp/Ip: Rp/Ip • T~,R" } = 

since Rp is a noetherian ring and the Gabriel filter £:(apnp ) has a filter basis of 

the form {p~Rp: n • N}, so 

= lim{Rp/pnRp: n • •} = Rp. I 

Similar statements may be established for a-finitely generated modules, as we 

will see: 

COROLLARY 1.3: Let M be a a-finitely generated R-module. Then 

. 

Proo~ As a _< aR-. p, it follows that Mp is a finitely generated Rp-module. As 

before, we have 
~ 
= p 

and the R-submodules N of Mp such that Mp/N • F~ N T~p are exactly the Rp- 

submodules of Mp such that the quotient belong to Tvp~p. Finally, the topology 

of Mp induced by apRp has a filter basis of the form {pnMp: n • N}. Combining 

the previous statements proves the assertion. I 
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Remark 1.4: It is well known that if Mp is finitely generated as an Rp-module, 

then Mp =~ Mp ®n, Rp, cf. [1, Th~or~me III.3.3]. Also, if p ~ Supp(M), then 

Mp = 0 and so M (~'"*) = 0. 

2. (a, al)-completion 

We proceed with studying the first skeleton a I of the torsion theory a in R - mod 

using the set C(a) of those prime ideals which are maximal in K:(a) 

PROPOSITION 2.1: Let a be a torsion theory in R - mod and consider the torsion 

theory V{Trp: p • C(a)}. Then a 1 : V{~rp: p • C(a)}. 

Proof: Since a _< V{~rp: p • C(a)} and a < a 1, then a 1 and v{Trp: p • C(a)} are 

determined by/C(a  1) and /C(V{~rp: p • C(a)}) respectively. Thus by definition 

we have K:(zrp) = ~(a)  \ (p} ,  and so from the next chain of equalities it follows 

the assertion. 

,'C(wrp) = n/C(~r~) = n(/C(a) "-.{p}) = /C(a)  "-. ¢(a)  = /c (a~) .  I 

COROLLARY 2.2: I f  M is an R-module, then 

M(o,' ~1) = M(°,v"p). 

With this identification between a I and wrp, we can handle the torsion theory 

a 1, in an easy way, by using the description of the Gabriel filter of the join of a 

family of torsion theories given in [16, (1.8)]. Hence we have: 

L(~ 1) = L(v~p)  : { Ip lIp , . . . Ipo:  I,,  • L(~ , , ) } .  

The following definition should give a method to decompose modules, and will 

be useful for our purposes: 

Definition 2.3: Let R be a ring, two ideals I and J of R will be called a- 

c o m a x i m a l  if I + J E £(a) .  A finite set of ideals will be called pai rwise  

a - c o m a x i m a l  if all couples of them are a-comaximal. 

An immediate consequence of the definition is that I and J are a-comaximal 

if, and enly if, Q~(I  + J)  = Q~,(R). 
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PROPOSITION 2.4: 

1. I ,  J are a-comaximal ideals of R if, and only if, the natural homomorphism 

Qo(R/ I  n J )  --* Qo (R/I)  x Q,  (R/J)  

is an isomorphism. 

2. I[ I, I1, . . . ,  In are pairwise a-comaximal ideals of R, then I + I1 . . .  In E 
L(a). 

3. g I1, . . . ,  I s  are pairwise a-comaximal ideals of R, then 

n . . .  n e £(a). 

4. /t" 11, . . . ,  In are pairwise a-comaximaI ideals of R, then the natural homo- 

morphism 

Q~(R/I1 N . . .  M In) --* Q,(R/I1)  x . . .  x Qo(R/In) 

is an isomorphism. 

Proof of 1: Suppose I ,  J are a-comaximal  ideals of R. The natural  homomor- 

phism 

¢: R ~ R / I  x R / J  

induces a homomorphism Qo(~)  with factorization 

Qo((I)): Q,,(R) -~ Qo(R/ I  N J) Q~(-~¢') Q,,(R/I  x R/J) .  

We will prove that  (R / I  x R /J ) /O(R)  E T~, then since Qa(O') is a monomor- 

phism, it will be an isomorphism. This will be enough to obtain the assertion 

because a is of finite type, and so Q~ commutes with direct sums. 

We claim that  (R / I  × R/J ) /O(R)  is a-torsion if, and only if, I and J are 

a-comaximal  ideals of R. 

First we remark that  (I + J ) / I  x (I + J ) / J  C_ ~(R);  let (j + I , i  + J) E 

(I + J ) / I  x (I + J ) / J  with j E J and i E I ,  thus if we define r = i + j ,  it is easy 

to see that  ¢ ( r )  = (j  + I ,  i + J) ,  which proves the remark. 

Let us assume that  I and J are a-comaximal  ideals of R and let (a+I,  b+ J) E 

R / I  x R /J ,  there exists H E £(a) such that  Ha, Hb C_ I + J, and hence 

H(a + I , b+  J) C_ ( I+  g ) / I  x ( I+  J ) / J  C_ ¢(R). 

For the converse, if (R / I  x R / J ) / ~ ( R )  is a-torsion and r E R, then (r + I ,  

O+J) E ( R / I x R / J )  and there exists H E £(a) such that  H(r+I ,  O+ J) C ¢(R). 
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From this inclusion we have tha t  for any h E H there exists rh E R such tha t  

rh + I = hr + I and rh + J = 0 + J ,  so h r  E I + J and H r  C I + J and hence I 

and J are a -comaximal  ideals of R. 

Proof of 2: Since I + I i  E £ ( a )  for i = 1 , . . . , n ,  we have H'~=l(I+Ii ) E ~(a) 

and it is clear the next inclusion 

I I i ~ l ( I  + Ii) C_ I + 11 . . .  In, 

hence I + 11 . . .  I ,  E L:(a). 

Proof of 3: In  this point, using the above assertions, we have tha t  (Ii +Hj>iIj) E 

£ ( a )  for i = 1 , . . . ,  n - 1. The  produc t  of all of these ideals is contained in the 
n - - I  

sum ~-~i=1 I 1 . . .  I i - l I i + l . . .  In, so the next inclusion is immediate  

(I1 n . . . n  I.) c Zl. . . i" 

whence follows the assertion. 

Proof of  4: We consider the canonical map  

• : R - - ,  R / I 1  x . . .  x R / I . .  

As in s ta tement  1, we only need to show tha t  (R/I1 x . . .  × R / I " ) / ~ ( R )  is a -  

torsion. Let (11+I1 ,  • • . ,  x ,  + I n )  E R/I1 x . . .  x R / I " .  Since Ii + I1  . . . / ~ - 1 I i + 1 .  • • 

In is in t : (a)  for all i = 1 , . . . ,  n, then there exist Hi E / : (a)  such tha t  Hixi C_ 

Ii + I 1 . . . I i - l l i + l . . . I ,  for each i = 1 , . . . , n .  If  we define H = H1M . . .  M H,~, 

then for any h E H there exist Yi E Ii and x(i) E I 1 . . .  I i - 1 I i + 1 . . .  In such tha t  

hxl = yi + x(o. If  we take x = x(1) + . . .  + x(n), then 

x + Ii = x(o + Ii = hxi + Ii. 

So H(Xl + I 1 , . . . ,  Xn + In) C 62(R) and this proves the assertion. ] 

LEMMA 2.5: Let I1 , . . . ,  In be pairwise a-comaximM ideals of R and let M be 

an R-module, then the quotient 

( I 1 M  n . . . n I " M ) / ( I 1 .  . . I " ) M  

is a-torsion. 
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n - l ( l i  + I I j>i l j )  E £:(a). Let Proo~ From Proposition 2.4 we obtain that IIi= 1 

m E I1MM. . .  M lnM, then 

n - - 1  

(iH1(1 i ~- jl~i/j))m ~_ (11"" . ln)M 

and hence we have the assertion. I 

The last statement in the Proposition 2.4 generalizes to arbitrary R-modules 

M. More precisely, we can enunciate: 

PROPOSITION 2.6: Let 11,..., 1,~ be pairwise a-comaximal ideals of R and let 

M be an R-module, then the natural homomorphism 

Q a ( M / I I ' "  I,~M) --~ Qa(M/I1M) ×. . .  × Qa(M/InM) 

is an isomorphism. 

PROPOSITION 2.7: 

1. Let 1 and J be ideals of R such that R/1 E J:~ M T,p and R / J  E j r  A 7",q 

with p ~ q E C(a). Then 1, J are a-comaximal. 

2. Let M be a a-finitely generated R-module, and 1, J as before, then 

HomR (Q~ (M/ IM)  , Q~ (M/JM))  = O. 

Proof of 1: Let V(I) = {p E Spec(R): I c_ p}. We know that U ( I + g )  = 

V(I) M V(J). Now, observe that o ~ Ass(R/l)  = {p} and also that p is just the 

minimal prime ideal of V(1). The same is true for J.  Therefore V(I+ J) C_ Z(a) 

and hence R/ ( I  + J) C T(a). 

Proof of 2: The module Q~(M/JM)  belong to .To MT~p C_ .T'%\q. So, we only 

have to prove that Qo(M/1M) is an. .q-torsion to obtain the assertion. It is 

clear that M / I M  is aR-. q-torsion because 0 ¢ Ass(M/1M) = {p} C_ Z(aR.. q). 

Now, as aa . . q  is stable (since a <_ aR..q) hence Qo(M/1M) is an..q-torsion. 

I 

LEMMA 2.8: Let M be a a-finitely generated R-module, then 

M (~'~') ~ !Am{M(°'*'): p E C(a)}. 

In particular, this holds for M = R. 
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Proo[." The proof will be given for R but actually works for any a-finitely 

generated R-module M. 

R (~'~1) = R (°'w,) ~ 5_m_m{Qo(R/Ip,...Ip.): Ip, e £(Pi), P i e  C(a)}. 

We observe that Ip~ and Ip~ are a-comaximal when Pi # P5" By Proposition 2.4 

there exists an isomorphism 

qo(R/Ipl ...Ipn ) ~- Qo(R/Ipl) × . . .  × Qo(R/Ip~). 

Now we use that HomR(Qo(R/Ip,), Q o ( R / I p j ) )  = 0 when Pi # Pj. Therefore, 

the inverse limit yields 

R (°'~') ~- h m_m{5_m_m{Qo(R/Ip,): R/Ip, • .~'o n ~r.,, }: P i e  C(a)} 

~!  ( )1 = im R(°'~p): p E C(a . 1 

THEOREM 2.9: H M  is a-t~nitely generated, then 

p • c(o)}.  

In particular, this holds for M = R. 

Proof" From the above lemma 

M (' ' '~) ~ i~_{M(°'~'): p • C(a)} 

and using the calculations at the beginning of the Section 1 we have: 

M (°'°') ~ li_m_m{~: p • C(a)}. 

In order to show that  this inverse limit is a product, we will prove that there 

does not exist any non zero homomorphism between Mp and Mq when p # q. 

Let f :  Mp + Mq be a homomorphism, then f is zero if, and only if, for any 

canonical projection p~: Mq ~ Mq/qnMq, the composition p~f is zero. Thus 

to prove that f is always zero, since Mq/q"Mq • J:%.. q, we only need to prove 

that Mp is aR\q-torsion. By Remark 1.4 we have that Mp ®Rp Rp ~ Mp, 

hence it is enough to prove that Rp is a t e ,  q-torsion. But RiP is aR-. q-torsion, 

and since aR-. q is stable, also is E(R/p). On the other hand, we know that 

Rp TM End(E(R/p)), [11, Corollary 3.10]. Let ¢ • End(E(R/p)); ¢ is determined 

So there exists I • E(aR..q) such that I¢(1) 0 by ¢(1) • E(R/p) • T%.. 4" = 

Thus, ¢ • an . .  q (R '~ and the proof is finished. I and therefore 1¢ = 0. 
\ - - /  
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COROLLARY 2.10: Under the same assumptions as before, 

M (°'°1) : II{/~rp: p C C(a) A Supp(M)}. 

Proof: It follows from Remark 1.4 and the previous Theorem. | 

151 

3. E x a c t n e s s  o f  t h e  ( ° , ° 1 ) - c o m p l e t i o n  fu n c t o r .  

We had obtained in [3] the left exactness of the (a, 7)-completion functor. But 

there are some cases in which the (a, al)-completion is an exact functor on a- 

finitely generated R-modules, as the next Proposition shows. 

PROPOSITION 3.1: Every exact sequence of a-finitely generated modules 

O ~  M ' ~  M ~ M " ~ O  

induces an exact sequence 

0 (M') (°'°1) M(o,°') (M") (°'°1) 0. 

Proof: The localization at p is always exact, thus for each p E C(a) we find an 

exact sequence: 

0 -+  ( M ' ) v  ~ Mp -~  (M")p  -+  O. 

As for all p C C(cr) we have a < aR-. p and each module in the above sequence is 

a finitely generated Rp-module. Now, making use of the results about classical 

completion, we obtain an exact sequence 

0 ~ (M' )p  ~ Mp --+ ( M " ) p  ~ O. 

From this and Theorem 2.9 we complete the proof. | 

COROLLARY 3.2: For every pair of a-finitely generated R-modules M and N, 

we have 

M (°'°') @ N (°'al) ~ (M ® N) (°'°1) . 

As it is well known in the I-adic completion case there exists an isomorphism 

between the completion of a finitely generated module and the tensor product 

with the completion R of R. The same result is not proved at the moment for 

this general completion, but we will approach to it as far as possible. 
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First of all, we define a homomorphism PM: R(a'al) ® M ~ M (~'~) as follows: 

#M((rl)Ie£(o~) ® m)  = (kN)Ne£~  (M), determined by the property that  

kiM = r1 mIM when N = I M .  

(Here we represent by miM the image of m + I M  E M / I M  in Q , ( M / I M ) ) .  

Since R (~'~1) ®R R ~ R (°'°~), using Corollary 3.2, we obtain 

R (°'~1) OR R ~ ~ ( R n )  (~ '~ )  . 

PROPOSITION 3.3: Let M be a a-finitely generated R-module. Choose N <_ M 

finitely generated such that M / N  E To. Then 

R (~'°~) ®R N ~ N (" '~) 

and in the following diagram, 

R (°'~') ®R N " R (~'°~) ®R M 

N(~,o~). ~- , M(o,~)  

the left-vertical and the bot tom-horizontal arrows are isomorphims of R-modules. 

Proof'. Let N be the adequate submodule of M; it is possible to find an exact 

sequence 

O--, K--+ R~- - ,  N - - ,  O 

with K a-finitely generated module and n E N. 

exact rows 

Since the next diagram with 

R (~'~) @R K • R (~'~1) ®R R n ' R (~'~) ®R N * 0 

, K (°'°~) • (R~)  (°'°~) , N ( ° ,~)  , 0 

is commutative and #R. is an isomorphism, then #N is an epimorphism. To get 

information about ~g  we consider the following commutative diagram 

R (°'~1) ®R H • R (~'~1) ®R K • R (~'~) ®R K / H  • 0 

H(~,~) ~- K(~,~)  * • 0 
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where H is a finitely generated submodule of K such that K / H  E To. The 

latter diagram shows that  # g  is an epimorphism because it is the second in a 

composition which is epimorphism. Now, turning to the former diagram, an easy 

diagram chase gives us that PN is &n isomorphism. | 

This Proposition can be particularized to perfect torsion theories, in this case 

we obtain a more efficient description of the completion. 

COROLLARY 3.4: When a is a perfect torsion theory (i. e.: Q~ is a exact functor 

on R - mod), for any a-finitely generated R-module M we have: 

R (~'~1) ®R M ~ M (~'~). 

Proof: In the diagram in the above Proposition 

R (a'~') @R N ' R (~'~) ®R M 

N(,.,,. 1) ~ . M("," 1) 

it is clear that  the top-horizontal arrow is a monomorphism. We claim that  it is 

an isomorphism and this shows the assertion. Consider the exact sequence 

0 ~ R (~'~1) ®R N --o R (°,~I) ®R M ~ R (°'°1) ®R M / N  

if we compute the latter module, we have 

R (°'°') ®R M / N  ~- R (~'~1) ®R Q~(R) ®R M / N  -~ R (a'~') ®R Q v ( M / N )  

where we used the a-injectivity of R (°'°~) and the exactness of Qo. Now, since 

M / N  is a-torsion, R (°,al) ®R Q~(M/N)  is zero. Hence we have an isomorphism 

R (~'a~) ®R N "~ R (°'al) ®R M, 

and as consequence we obtain the assertion. | 

As a subproduct of this result we have that if a is a perfect torsion theory, 

then R (a,vl), the (a, al)-completion of R, is a flat R-module. 

Example 3.5: Let R be a Dedekind domain. If I is a non zero ideal of R, then the 

/-adic completion of R can be obtain as the (a, r)-completion when we consider 

a the trivial torsion theory and ~ = al. It is clear that  in this case Z ( a  1) = 
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Spec(R) \ {0}  and since Z ( a l )  = V( I )  C Spec(R) \{0}  hence a < r < ~r 1. In 

this situation applying the above results we have 

R = p • V ( I ) }  

In this particular case the index family is finite and then the (a, T)-completion 

has the correspondent universal property. 

Example 3.6: Let R be a Krull domain. Consider a the torsion theory defined 

by K:(a) = Spec(l)(R). Thus, we are in condition to apply the above results. As 

before, a 1 is the usual torsion theory in a domain. To compute R (~'°1) we observe 

that for every p • Spec(1)(R) \ {0}  the ring of quotients R t is a local principal 

ideal domain, and so pR t is generated by a single element, said up. For these 

domains the classical completion can be described in terms of a power series ring 

in an indeterminate, said Xp, as follow 

A 

R t ~- Rp[[Xt]]/(Xp - at) , 

see [7, Proposition 3.3.]. By Theorem 2.9 we obtain an isomorphism decomposing 

the (a, a 1)_completion. 

R (~'¢1) =~ II{R-pp: p E Spec (1) \{0}}  = II{Rp[[Xt]]/(X p - at): p • Spec (1) \{0}}.  
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